posted by organizer: grupocole || 11937 views || tracked by 8 users: [display]

AS-RLPMTM 2021 : Applied Sciences special issue Rich Linguistic Processing for Multilingual Text Mining

FacebookTwitterLinkedInGoogle

Link: https://www.mdpi.com/journal/applsci/special_issues/linguistic_mining
 
When N/A
Where N/A
Submission Deadline Jun 30, 2021
Categories    NLP   artificial intelligence   information retrieval   text mining
 

Call For Papers

Special Issue "Rich Linguistic Processing for Multilingual Text Mining"

A special issue of Applied Sciences (ISSN 2076-3417; WoS JCR impact factor 2.474). This special issue belongs to the section "Computing and Artificial Intelligence".

Deadline for manuscript submissions: 11 January 2021.
This special issue is now open for submission. Articles will be reviewed as they submitted.

Special Issue Information:

Natural language processing and text mining technologies have experienced a revolution in the last few years, with substantial improvements in accuracy mainly due to the use of deep-learning neural networks and large pretrained models relying on huge amounts of data. Explicit representations of linguistic knowledge (such as parse trees, semantic dependencies, lexicons, linguistic rules, etc.) have lost their protagonist role in systems where neural networks perform the bulk of the task, often in an end-to-end fashion. However, it is far from guaranteed that the accuracy improvement gains from the advances in neural architectures will not plateau, as in previous occasions, highlighting the need to combine them with rich linguistic processing. Furthermore, end-to-end neural systems have limitations, especially in a context of multilingualism where low-resource languages are involved: black-box nature with limited explainability, data-induced bias, reliance on large amounts of data that may be unavailable for many of the thousands of languages existing in the world, high computational requirements, and large energy usage and contribution to global warming.

For all these reasons, approaches utilizing explicit linguistic knowledge are highly relevant and should be pursued by the research community. In this Special Issue, we thus focus on approaches to natural language processing and text mining with an emphasis on multilingualism or low-resource languages, and which include rich linguistic processing, in the sense that explicit linguistic knowledge plays a relevant role in the approach, be it exclusively or in combination with machine learning and neural approaches.

Keywords:

Natural language processing
Multilingual language processing
Language resources
Linguistic knowledge
Text mining
Information retrieval
Sentiment analysis
Recommender systems
Explainable artificial intelligence
Data-induced bias in NLP systems

Guest Editors:

Prof. Dr. Miguel A. Alonso
Prof. Dr. Carlos Gómez-Rodríguez
Prof. Dr. Jesús Vilares

Website: https://www.mdpi.com/journal/applsci/special_issues/linguistic_mining

Related Resources

CHEME 2021   5th International Conference on Chemical Engineering
MDPI-AppSci-CAANLP 2021   Applied Sciences special issue on Current Approaches and Applications in Natural Language Processing
IJBISS 2021   International Journal of Business Information Systems Strategies
MDPI-SI-BDHA 2021   Call for Papers: Special Issue “Big Data for eHealth Applications” (MDPI Applied Sciences, IF 2.474 – Indexed on Scopus, Web of Science)
IARCE 2021-Ei Compendex & Scopus 2021   2021 5th International Conference on Industrial Automation, Robotics and Control Engineering (IARCE 2021)
SI on ATD&IS 2021   Special Issue on Advanced Technologies in Data and Information Security, Applied Sciences, MDPI
CSEIT 2021   8th International Conference on Computer Science, Engineering and Information Technology
ISHAD 2021   The 5th International Symposium on Natural Hazards and Disaster Management (ISHAD2021) will
ECNLPIR 2021   2021 European Conference on Natural Language Processing and Information Retrieval (ECNLPIR 2021)
CFMAI 2021   2021 3rd International Conference on Frontiers of Mathematics and Artificial Intelligence (CFMAI 2021)