posted by organizer: pnkoch || 5156 views || tracked by 5 users: [display]

AutoML 2020 : The Fourth International Workshop on Automation in Machine Learning


When Aug 24, 2020 - Aug 24, 2020
Where KDD 2020, San Diego, California - USA
Submission Deadline Jun 1, 2020
Notification Due Jun 15, 2020
Final Version Due Jul 2, 2020
Categories    machine learning   artificial intelligence   automl   automation

Call For Papers

Workshop Overview

"Why 2020 will be the Year of Automated Machine Learning"...this was the title of a recent GigaBit Magazine article. The reason is that "AutoML represents the next stage in ML’s evolution, promising to help non-tech companies access the capabilities they need to quickly and cheaply build ML applications". However, one Harvard Business Review article highlighted the "risks of AutoML" and provided some guidance to avoid those risks. According to Forbes in December of 2018, one of the 5 Artificial Intelligence Trends To Watch Out For In 2019 is the gain in prominence of automated machine learning. The term AutoML is appearing more and more in data science discussions, publications, applications, and systems, as an aid to build better machine learning models. AutoML is being used in autonomous driving applications, sales forecasting and lead prioritization systems, and in many generic systems to generate and optimize machine learning pipelines that can select features, transform data, select the best model type and optimize hyperparameters. The debates continue regarding the level to which data science can and should be automated, the level of machine learning knowledge and expertise needed to build quality models, and the where and when manual intervention is necessary, yet the development and application of approaches and tools to automate repeated tasks continues to increase. The advancement, education, and adoption of data mining and machine learning practices require a transformation of theory to application, and feedback from application to theory. The development of tools to automate data mining efforts fosters this transformation and feedback and also promotes the development of standards and the adoption of these standards. Automated standards enable researchers and practitioners to better communicate, sharing successes and challenges in a more consistent common language. In an age of software as a service and ever-increasing scalability requirements, standards are necessary. Consistent adoption, application, and communication in turn promote research and refinement of the automated strategies and growth of the community. To keep pace with the rapidly increasing volume and rate of data generation, standardization and automating of data mining activities are critical. The challenges that must be discussed relate to the boundaries of automated tasks and individual attention needed for each unique business and data scenario.

The goals of the AutoML workshop are:

· To identify opportunities and challenges for automation in machine learning

· To provide an opportunity for researchers to discuss best practices for automation in machine learning, potentially leading to definition of standards

· To provide a forum for researchers to speak out and debate on different ideas in the area of automation in machine learning

Technical Sponsors

• RTP ACM Chapter

• IEEE SMC Human Perception in Multimedia Computing

Call For Content

We request extended abstracts (2-4 pages) or full-length papers (up to 10 pages) be submitted by May 20, 2020. Accepted abstracts/papers will be presented as oral and/or poster presentations.

Topics include (but are not limited to):

• Hyperparameter autotuning of machine learning algorithms
• Neural Architecture Search (NAS)
• Internet of things (IoT) and automation
• Automation bias and misuse
• Automated methods:
· in machine learning, data mining, predictive analytics, and deep learning
· in autonomous vehicles
· in machine learning pipelines and process flows of production systems
· in big data applications
· to detect fake news
· for adversarial robustness
· for monitoring and updating models
· for streaming data
· for interpretable machine learning
· for large-scale modeling
· for data preparation and feature engineering
· for variable selection and model selection

Submission Instructions

Extended abstracts (2-4 pages) are required to be considered for this workshop. Full-length papers (up to 10 pages) will also be considered but are not required. Use of the ACM Proceedings Format ( is recommended.

All submissions will be peer-reviewed. If accepted, at least one author should attend the workshop to present their work. The papers should be in PDF format and submitted via EasyChair:

Important Dates

*JUNE 1, 2020: Due date for paper/abstract submissions
June 15, 2020: Notification of acceptance to authors
July 2, 2020: Camera-ready final submission of accepted papers
August 24, 2020: Workshop

Contact Us

For any questions, please email the organizing committee at

Related Resources

Ei/Scopus-AACIP 2024   2024 2nd Asia Conference on Algorithms, Computing and Image Processing (AACIP 2024)-EI Compendex
MLNLP 2024   2024 7th International Conference on Machine Learning and Natural Language Processing (MLNLP 2024)
IEEE-Ei/Scopus-ACEPE 2024   2024 IEEE Asia Conference on Advances in Electrical and Power Engineering (ACEPE 2024) -Ei Compendex
IEEE-Ei/Scopus-SGGEA 2024   2024 Asia Conference on Smart Grid, Green Energy and Applications (SGGEA 2024) -EI Compendex
AMLDS 2025   2025 International Conference on Advanced Machine Learning and Data Science
DSIT 2024   2024 7th International Conference on Data Science and Information Technology (DSIT 2024)
NeurIPS 2024   The Thirty-Eighth Annual Conference on Neural Information Processing Systems
AutoML 2024   AutoML Conference 2024
IEEE ICA 2022   The 6th IEEE International Conference on Agents
CCBDIOT 2024   2024 3rd International Conference on Computing, Big Data and Internet of Things (CCBDIOT 2024)