posted by user: imanrahimi || 1093 views || tracked by 2 users: [display]

Elsevier 2020 : Call for Elsevier book chapter proposal: Multi-Objective Combinatorial Optimization Problems and Solution Methods

FacebookTwitterLinkedInGoogle

Link: https://cutt.ly/jtgsDNj
 
When Mar 14, 2020 - Apr 16, 2020
Where Elsevier
Submission Deadline Apr 15, 2020
Notification Due May 1, 2020
Final Version Due Jul 15, 2020
Categories    optimization   combinatorial problems   multi-objective   solution
 

Call For Papers

Call for book chapter proposal (Elsevier):
Editors:
-Professor Mehdi Toloo,
Technical University of Ostrava, Ostrava, Czech Republic (mehdi.toloo@vsb.cz)
University of Torino, Torino, Italy (mehdi.toloo@unitio.it)
Sultan Qaboos University, Muscat, Oman (m.toloo@squ.edu.om)

-Professor Siamak Talatahari,
University of Tabriz, Tabriz, Iran and Near East University, North Cyprus, Turkey (Talatahari@tabrizu.ac.ir, Siamak.Talat@gmail.com).

-Dr. Iman Rahimi,
Universiti Putra Malaysia, Malaysia, and Young Researchers and Elite Club, Iran (iman83@gmail.com).

Project summary:
Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science. Many combinatorial optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic, and algebraic techniques.
Optimization problems with multi-objective arise in a natural fashion in most disciplines and their solution has been a challenge to researchers for a long time. Despite the considerable variety of techniques developed in Operations Research (OR) and other disciplines to tackle these problems, the complexities of their solution calls for alternative approaches.
In this book, we will discuss the results of a recent multi-objective combinatorial optimization achievement considering metaheuristic, mathematical programming, heuristic, hyper heuristic, and hybrid approaches. In other words, this book intends to show a diversity of various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice.
-A non-exhaustive list of topics we invite to be considered for inclusion in this book are as follows:
1. Basic concepts of combinatorial optimization
Chapter 1 presents and motivates MOP terminology and the nomenclature used in successive chapters including a lengthy discussion on theimpact of computational limitations on finding the Pareto front along with insight to MOP concepts.
2. Random methods for combinatorial optimization problems
2.1. Metaheuristic
2.1.1. Population-based methods
2.1.1.1. Multi-objective Evolutionary Algorithm (MOEA) Approaches
MOEA developmental history has proceeded in a number of ways from aggregated forms of single-objective Evolutionary Algorithms (EAs) to true multiobjective approaches and their extensions. Each MOEA is presented with historical and algorithmic insight. Being aware of the many facets of historical multiobjective problem solving provides a foundational understanding of the discipline.
2.1.1.2. Multi-objective swarm intelligence algorithms
Multi-objective particle swarm optimization, multi-objective ant colony optimization,…
2.1.2. Trajectory methods
Simulated annealing, Tabu search,…
2.1.3. Coevolution and hybrid of MOEA Local Search
Both coevolutionary MOEAs and hybridizations of MOEAs with local search procedures are covered.

2.2. Heuristic algorithms
2.2.1. Improvement heuristics
2.2.2. Constructive heuristics
2.3. Relaxation algorithms
E.g. Lagrangian relaxation
2.4. Decomposition algorithms
Benders decomposition algorithm
2.5. Column generation
3. Enumerate methods for combinatorial optimization problems
E.g. Dynamic programming
4. Deterministic methods for combinatorial optimization problems
4.1. Linear programming methods
Goal programming,…
4.2. Branching algorithms
This chapter presents well-known branching algorithms such as branch&cut, branch&price, branch& bound.
5. Many-objective combinatorial optimization problems
This chapter presents multi-objective combinatorial optimization in the case of more than three objectives along with solution approaches.
Schedule

Chapter proposals  April 15, 2020
Decisions from editors  April 30, 2020
Full submission of chapters  July 15, 2020
Feedback of reviews  October 31, 2020
Revised chapter submission  November 30, 2020
Final acceptance notifications  December 30, 2020

Please submit your proposal here:https://cutt.ly/jtgsDNj

Related Resources

ORAJ 2020   Operations Research and Applications: An International Journal
Call for Book Chapter 2020   Deep Learning and Big Data for Intelligent Transportation: Enabling Technologies and Future Trends
ANTS 2020   12th International Conference on Swarm Intelligence
META-MACHINE-SYNERGISTIC 2020   Metaheuristic schemes and Machine learning techniques: A synergistic perspective. (Applied Mathematical Modelling Elsevier IF=2.841, Q1)
EI/SCOPUS-CSMO 2020   4th International Conference on Simulation, Modeling and Optimization (CSMO 2020)
Edge-Fog-Cloud -IoT 2020   Special issue (Q1 journal: Elsevier Information System): Emerging Trends and Challenges in Edge-Fog-Cloud Interplay in the Internet of Things (IoT)
META 2020   Int. Conf. on Metaheuristics and Nature Inspired Computing
Call for Contributions 2021   Beyond the 2ºC: Business and Policy Trajectories to Climate Change Adaptation
CP 2020   Twenty-Sixth Conference on Principles and Practice of Constraint Programming
Smart-Cities 2020   Call for Springer Book Chapters : Smart City Architecture and Infrastructure: An IoT Perspective