posted by organizer: fbellavia || 4464 views || tracked by 7 users: [display]

MAES 2020 : Machine Learning Advances Environmental Science

FacebookTwitterLinkedInGoogle

Link: https://sites.google.com/view/maes-icpr2020/
 
When Jan 10, 2021 - Jan 15, 2021
Where online
Submission Deadline Oct 25, 2020
Notification Due Nov 10, 2020
Final Version Due Nov 15, 2020
Categories    computer science   machine learning   environmental science
 

Call For Papers

=== Aim & Scope ===

Environmental data are growing steadily in volume, complexity and diversity to Big Data mainly driven by advanced sensor technology. Machine learning can offer superior techniques for unravelling complexity, knowledge discovery and predictability of Big Data environmental science.

The aim of the workshop is to provide a state-of-the-art survey of environmental research topics that can benefit from Machine Learning methods and techniques. To this purpose the workshop welcomes papers on successful environmental applications of machine learning and pattern recognition techniques to diverse domains of Environmental Research, for instance, recognition of biodiversity in thermal, photo and acoustic images, natural hazards analysis and prediction, environmental remote sensing, estimation of environmental risks, prediction of the concentrations of pollutants in geographical areas, environmental threshold analysis and predictive modelling, estimation of Genetical Modified Organisms (GMO) effects on non-target species.

The workshop will be the place to make an analysis of the advances of Machine Learning for the Environmental Science and should indicate the open problems in environmental research that still have not properly benefited from Machine Learning.

Extended papers of this workshop will be published as a special issue in the journal of Environmental Modelling and Software, Elsevier.

*** Due to the COVID pandemic, the workshop will be taken fully virtual. All accepted papers will be published. ***


=== Invited Talk ===

"Harnessing big environmental data by machine learning", prof. Friedrich Recknagel, School of Biological Sciences, University of Adelaide, Australia

(prof. Recknagel's bio: http://www.adelaide.edu.au/directory/friedrich.recknagel)
(talk abstract: https://drive.google.com/file/d/12BFBiG4pwN-6TRKCy0OuGHOgue4YbOKJ/view?usp=sharing)


=== Important Dates ===

- 25 October 2020 - workshop submission deadline (*EXTENDED*)
- 10 November 2020 - author notification
- 15 November 2020 - camera-ready submission
- 1 December 2020 - finalized workshop program


=== Organizers ===

Francesco Camastra, Universita' di Napoli Parthenope, Italy
Friedrich Recknagel, University of Adelaide, Australia
Antonino Staiano, Universita' di Napoli Parthenope, Italy


== Publicity chair ==

Fabio Bellavia, Universita' di Palermo, Italy

_______________________________________________________________________

Contacts: antonino.staiano@uniparthenope.it
francesco.camastra@uniparthenope.it

Workshop: https://sites.google.com/view/maes-icpr2020/
ICPR2020: https://www.micc.unifi.it/icpr2020/


Related Resources

ICADCML 2022   3rd International Conference on Advances in Distributed Computing and Machine Learning - 2022
IJAD 2021   International Journal of Advanced Dermatology
GMLFCN 2021   Call for Book Chapters: Green Machine-Learning Protocols for Future Communication Networks
MLNLP 2021   2nd International Conference on Machine Learning Techniques and NLP
ASPAI 2021   3rd International Conference on Advances in Signal Processing and Artificial Intelligence
WSDM 2022   Web Search and Data Mining
MAES special issue 2021   Elsevier Journal of "Environmental Modelling & Software", special Issue on "Machine Learning Advances Environmental Science"
CSEIT 2021   8th International Conference on Computer Science, Engineering and Information Technology
MLHMI--Ei and Scopus 2022   2022 3rd International Conference on Machine Learning and Human-Computer Interaction (MLHMI 2022)--Ei Compendex, Scopus
IJBISS 2021   International Journal of Business Information Systems Strategies