posted by user: MetaH || 2032 views || tracked by 3 users: [display]

Data Analytics 4 Environment 2021 : Data analytics for applied environmental and hydraulic modelling

FacebookTwitterLinkedInGoogle

Link: https://mssanz.org.au/modsim2021/streams.html
 
When Dec 5, 2021 - Dec 10, 2021
Where Sydney, Australia
Submission Deadline Oct 15, 2021
Categories    data analytics   computational intelligence   hydrological sciences   environmental modelling
 

Call For Papers

CALL FOR ABSTRACT

Conference:
The 24th International Congress on Modelling and Simulation (MODSIM2021)

Stream:
F. Environment and ecology

Session:
F2. Data analytics for applied environmental and hydraulic modelling

Data analytics and computational intelligence techniques are a collection of methodologies, which aim to exploit tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness and low solution cost. Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real-world complexities are within these areas. An integrated view of advanced data analytics and computational intelligence methodologies can be used in solving real-life hydrological and environmental problems; specifically in issues such as the surface and groundwater hydrology, hydrogeology, and hydrogeophysics as well as hydrological sciences, including water-based management, climatology, water resource systems, geomorphology, and environmental and hydraulic modelling that impact on economics and society.

The accurate estimation of these issues is critical for disaster prevention and management efforts to help reduce the potential risks of damage or loss of lives and the environment. Nowadays, to address these issues, there are widely used models based on data mining techniques such as Generalized Regression Neural Network (GRNN), Multilayer Perceptron (MLP) and Support Vector Regression (SVR) as well as General Programming models (GP). Another novel artificial intelligence methodology is weighted-average models such as Bayesian Model Averaging (BMA), and lots of other existed machine learning and fusion-based methodologies which combine predictions of individual expert systems. The weighted-average models evaluate different model predictions and assign each of them a weight based on their performance. Some of these models have the ability to reflect the uncertainty of the prediction, hence, these fusion-based techniques present advantages over other weighted-average methods, including their simplicity, rapidity and high precision.

Organizers:
- Amir H Gandomi; Professor, Data Science Institute, University of Technology Sydney, Australia. gandomi@uts.edu.au
- Mohammad Reza Nikoo; A/Professor, Department of Civil and Architectural Engineering, Sultan Qaboos University, Oman. m.reza@squ.edu.om
- Biswajeet Pradhan; Distinguished Professor, School of Information, Systems and Modelling, University of Technology Sydney, Australia. Biswajeet.Pradhan@uts.edu.au

Related Resources

FPC 2025   Foresight Practitioner Conference 2025
IEEE CNCIT 2025   2025 4th International Conference on Networks, Communications and Information Technology (CNCIT 2025)
UVS-Oman 2026   3rd International Conference on Unmanned Vehicle Systems on Intelligent Systems for Industrial Challenges
MLPR 2025   ACM--2025 The 3rd International Conference on Machine Learning and Pattern Recognition (MLPR 2025)
BPOD 2025   The Eighth IEEE International Workshop on Benchmarking, Performance Tuning and Optimization for Big Data Analytics and Big Models
ECTA 2025   17th International Conference on Evolutionary Computation Theory and Applications
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing
EI/Scopus-ICRCSE 2025   2025 International Conference on Resilient City and Safety Engineering-EI/Scopus
AIIT 2025   XV International Conference on Applied Internet and Information Technologies
AI-Viz 2025   6th International Conference AI and Visualisation