posted by user: liuanan || 2455 views || tracked by 1 users: [display]

CVPR2019-MitosisDetection 2019 : CVPR 2019 Contest on Mitosis Detection in Phase Contrast Microscopy Image

FacebookTwitterLinkedInGoogle

Link: http://media.tju.edu.cn/mitosisdetection/
 
When Jun 16, 2019 - Jun 21, 2019
Where Long Beach, CA, USA
Submission Deadline TBD
Categories    computer vision   machine learning   bio-medical image analysis
 

Call For Papers

Mitosis detection plays important role in many bio-medical applications such as medical diagnosis and drug development, by providing important information about cell division behaviors. Phase contrast microscopy imaging provides an advantageous tool for real time observation of cells without cell damage caused by staining. Spatial visual information, together with temporal dynamic information captured by continuous microscope imaging, could be used for automatic detection of mitotic events among whole-slide images with computer vision and machine learning techniques.

The aim of this challenge is to provide a common benchmark for the evaluation of the mitosis detection algorithms in a new dataset of whole-slide phase contrast time-lapse microscopy images.

Mitosis detection aims to determine the presence of mitosis in the microscopy image, and then locate the spatial and temporal location of mitotic cells across the whole-slide temporal image sequence. Unlike mitotic detection in static images, mitosis detection in phase contrast image dataset need to take both spatial and temporal information into consideration for more precise detection results.

Mitosis detection in phase contrast time-lapse microscopy image has made great progress in recent years of research. Compared with traditional hand-crafted feature based methods, deep learning based method received extensive attention. Several deep learning based methods have been proposed for mitosis detection task in recent years, and they are commonly evaluated on some popular datasets such as the C3H10 and C2C12 dataset. These datasets contain relatively few annotated mitotic events, which could not adequately address the need for big data in deep learning methods. However, since the acquirement of mitosis annotation takes much expertise, it is expensive to get large scale of annotated dataset. In order to promote the development of mitosis detection algorithms, we propose a competition with a dataset that contains more annotated mitotic events than previous datasets.

Related Resources

Cyber-AI 2026   The 2nd IEEE 2026 International Conference on Cybersecurity and AI-Based Systems (Scopus)
Ei/Scopus-ITCC 2026   2026 6th International Conference on Information Technology and Cloud Computing (ITCC 2026)
CACML 2026   2026 5th Asia Conference on Algorithms, Computing and Machine Learning (CACML 2026)
IEEE-ICECCS 2026   2025 IEEE International Conference on Electronics, Communications and Computer Science (ICECCS 2026)
Applied System Innovation 2026   Special Issue: AI-Driven Computational Methods for Social Media Analysis
CVIPPR 2026   2026 4th Asia Conference on Computer Vision, Image Processing and Pattern Recognition (CVIPPR 2026)
(SCI) 2026   Sustainability in Creative Industries (SCI) 5th Edition
AMLDS 2026   IEEE--2026 2nd International Conference on Advanced Machine Learning and Data Science
IFIPSC 2026   21st IFIP Summer School on Privacy and Identity Management 2026
CompHealth 2026   Computational Health Workshop at ICCS 2026