posted by organizer: PeerJ || 3736 views || tracked by 2 users: [display]

Understanding Brain Disorders 2022 : Deep Learning Techniques for Understanding Brain Disorders

FacebookTwitterLinkedInGoogle

Link: https://peerj.com/special-issues/116-dl-brain-disorders
 
When N/A
Where N/A
Submission Deadline Dec 2, 2022
Categories    artificial intelligence   data mining   machine learning   neural networks
 

Call For Papers

The brain is one of the most complex organs of the human body. Modern understanding of brain disorders is shaped by multiple non-invasive modalities of data that can be acquired from the human brain, such as EEG, fMRI, PET and fNIRS. Due to the high dimensional nature of these data, understanding patterns in the data and their discriminability across disorders has been a challenge. The advent of Deep learning (DL) models has begun to address this challenge, through pattern recognition, classification, detection, diagnosis, augmentation and segmentation. The cross-pollination of ideas from neuroscience, neurology, psychiatry, neuroimaging and computer science is required for this budding field to attain its full potential.

The purpose of this Special Issue is to showcase research where ideas from deep learning within the field of engineering and computer science are used to understand brain function in the healthy brain (neuroscience) as well as those in neurological and psychiatric brain disorders with the help of neuroimaging data. Applications to neurological disorders include (but are not limited to) Alzheimer's Disease and Dementia, movement disorders including Parkinson's Disease, Stroke, Epilepsy, Amyotrophic Lateral Sclerosis, Brain Injury and Brain Tumours while psychiatric disorders include Schizophrenia spectrum, Autism spectrum, ADHD, Depression, PTSD, eating disorders, anxiety disorders, etc.

Researchers are encouraged to submit manuscripts related to classification, regression, detection, diagnosis, prediction of treatment outcomes, augmentation or segmentation methods based on DL for publication. Approaches to explainable AI, which enable a scientific understanding of features in the data (and hence aspects of brain function) that are most important for driving the model’s prediction are very much encouraged. This special issue especially welcomes submissions that depict the end-to-end technological viewpoint that uses automated informatics systems to solve single or multiple cases of healthcare advancements.

Related Resources

S+SSPR 2026   Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition and Structural and Syntactic Pattern Recognition
AMLDS 2025   IEEE--2025 International Conference on Advanced Machine Learning and Data Science
CVAI 2026   2026 International Symposium on Computer Vision and Artificial Intelligence (CVAI 2026)
IEEE- CCRIS 2025   2025 IEEE 6th International Conference on Control, Robotics and Intelligent System (CCRIS 2025)
SUMAC 2025   The 7th ACM international workshop on analysis, understanding and promotion of heritage contents
ICDM 2025   The 25th IEEE International Conference on Data Mining
VLSIA 2025   11th International Conference on VLSI and Applications
IJCSITCE 2025   The International Journal of Computational Science, Information Technology and Control Engineering
AAIML 2026   2026 International Conference on Advances in Artificial Intelligence and Machine Learning
Ei/Scopus-IPCML 2025   2025 International Conference on Image Processing, Communications and Machine Learning (IPCML 2025)