posted by organizer: ioannamiliou || 1487 views || tracked by 4 users: [display]

CBMS Special Track 2022 : Federated Learning for Medical Data

FacebookTwitterLinkedInGoogle

Link: https://sites.google.com/view/cbms-special-track-federated
 
When Jul 21, 2022 - Jul 23, 2022
Where Shenzhen, China (or virtual attendance)
Submission Deadline Apr 25, 2022
Notification Due May 23, 2022
Final Version Due Jun 6, 2022
Categories    federated learning   medical data
 

Call For Papers

======================================================================
CBMS Special Track - Federated Learning for Medical Data
CALL FOR PAPERS
21-23 July 2022
Shenzhen, China (virtual attendance will be possible)
https://sites.google.com/view/cbms-special-track-federated

======================================================================

Important Dates
----------------------------------------------------------------------------------
* Paper submission deadline: 25 April 2022
* Notification of acceptance: 23 May 2022
* Camera-ready due: 6 June 2022
All submissions close at 11:59 pm Anywhere On Earth [AOE]

About the Special Track - Federated Learning for Medical Data
----------------------------------------------------------------------------------
This Special Track is organized as part of the 35th IEEE International Symposium on Computer-Based Medical Systems (CBMS).

The success of modern machine learning is based on access to rich, diverse, and, above all, large data sets. However, getting access to large datasets can be a challenge in many domains, one of which is the medical domain. Different institutions, such as hospitals, medical centers, and pharmaceutical companies, often own the data, and there are straight privacy and regulatory constraints when sharing such data. Moreover, medical data is sometimes collected by IoT devices with their limited inherent communication and privacy constraints. Hence, despite the benefits of machine learning in such distributed data settings, it is essential that the training be done locally without sharing any data, but by resorting to distributed optimization solutions, such as Federated Learning. Federated learning for medical data is now in its infancy, while medical data has many unique challenges, e.g., in terms of data-owners, regulatory concerns, data diversity, algorithmic fairness, and biases. The goal of this special track is to focus on recent advancements around federated learning in such medical settings.


Topics of interest
-----------------------------------------------------------------------------------
The topics of this special track include but are not be limited to the following:

- Federated transfer learning for medical data sources
- Privacy-preserving techniques for federated learning
- Architectures and protocols for federated learning on medical data sources
- Explainable federated learning medical data sources
- Federated learning for univariate and multivariate medical time series
- Federated learning for time series nowcasting and forecasting
- Handling data diversity in federated learning architectures
- Federated learning for medical IoT
- Personalization in federated learning
- Heterogeneous and unbalanced (non-IID) medical data
- Federated MRI and medical image processing


How to Submit
----------------------------------------------------------------------------------------
Authors can submit both long/regular and short papers. Long papers may consist of up to six (6) Letter-sized pages. Long papers will be presented orally. The program committee may suggest the presentation of the paper as a short paper. Short papers may consist of up to four (4) Letter-sized pages. Short papers will be presented orally as short talks.

Each contribution must be prepared following the IEEE two-column format; the authors may use LaTeX or Microsoft Word templates when preparing their manuscripts.

Papers must be submitted electronically using the EasyChair conference management system at: https://easychair.org/conferences/?conf=cbms2022

All submissions will be peer-reviewed by up to three reviewers of the Program Committee.

All accepted papers will be included in the conference proceedings and will be published by IEEE. Publication in proceedings is conditioned to the registration and presentation of the paper at the conference by one of their authors. If the paper is not presented at the conference, it will not be included in the proceedings.


Organizers
----------------------------------------------------------------------------------------
Sindri Magnússon, Stockholm University
Ioanna Miliou, Stockholm University
Panagiotis Papapetrou, Stockholm University

Related Resources

CBMS 2025 - ST Security and Privacy 2025   CBMS 2025 - Special Track: Security and Privacy in Health Systems: Addressing Technology, Society, and Law
FedGenAI-IJCAI 2025   International Workshop on Federated Learning with Generative AI In Conjunction with IJCAI 2025
IEEE-MLNLP 2025   2025 IEEE 8th International Conference on Machine Learning and Natural Language Processing (MLNLP 2025)
FLTA 2025   The 3rd International Conference on Federated Learning Technologies and Applications (FLTA 2025)
Ei/Scopus-CVIV 2025   2025 7h International Conference on Advances in Computer Vision, Image and Virtualization (CVIV 2025)
BPOD 2025   The Eighth IEEE International Workshop on Benchmarking, Performance Tuning and Optimization for Big Data Analytics and Big Models
MICAD 2025   The 6th International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2025)
GAI4BA 2025   CBMS 2025 - Special Track on GenAI for Biomedical Applications (GAI4BA)
ACM SAC 2025   40th ACM/SIGAPP Symposium On Applied Computing
DS 2025   28th International Conference on Discovery Science