posted by system || 742 views

ML-DE@ECAI 2024 : Machine Learning Meets Differential Equations: From Theory to Applications

FacebookTwitterLinkedInGoogle

Link: https://mlde-ecai-2024.github.io/
 
When Sep 19, 2024 - Sep 20, 2024
Where ECAI, Santiago de Compostela, Spain
Submission Deadline May 15, 2024
Notification Due Jul 1, 2024
 

Call For Papers

The [ML-DE] Workshop on "Machine Learning Meets Differential Equations: From Theory to Applications", co-located with ECAI 2024, is designed to spotlight the dynamic interplay between Machine Learning (ML) and Differential Equations (DE), two fields at the heart of numerous technological and scientific breakthroughs. This workshop aims to delve into how DEs, foundational in modeling complex systems across various domains, can be ingeniously coupled with ML to unlock new potentials, from enhancing prediction accuracies to fostering advancements in explainable AI. It is motivated by the emerging need to transcend traditional boundaries, leveraging the predictive power of ML to tackle DE-driven challenges in novel ways, thereby catalyzing a deeper understanding and innovative solutions to problems that were once considered intractable. By emphasizing energy-efficient algorithms and aiming to reduce the computational footprint of ML, the workshop underscores a commitment to sustainable AI practices. Participants will explore the integration of DEs into ML architectures, the application of ML in solving intricate DE problems, and the potential of these convergences to revolutionize fields as diverse as physics, biology, and beyond. Our purpose is to forge a community that not only shares insights but actively contributes to expanding the frontiers of what's possible at the intersection of ML and DE, setting a new paradigm for research and application in the era of intelligent technologies.


Publication Types:
-Full-Length Papers: Maximum of 8 pages, excluding references and supplementary material.
-Extended Abstracts: Limited to 2 pages, including references, designed for poster sessions and
brief elevator pitches (approximately 5 minutes). This format provides a snapshot of your research, perfect for generating interest and discussion.
-Presentation Only: Authors of papers recently published in top-tier conferences and journals (JMLR, JAIR, MLJ, PAMI, IJCAI, NeurIPS, ICLR, AISTATS, ICML, AAAI) are encouraged to submit a 2-page extended abstract, including references, for presentation. Please indicate the original publication venue in your submission form.
-Reproducibility Track: Contributions that enhance the reproducibility of research findings are crucial. We invite interactive tutorials, demos, libraries, packages or datasets (e.g., Jupyter notebooks) and their respective 2-page extended abstracts. This track emphasizes the practical application and implementation of research, facilitating a deeper understanding and broader use of ML-DE techniques. Demo code (e.g. Jupyter notebooks etc.) will be published jointly at our github together with a link to the paper.

Full-Length Papers will be in a volume by the Proceedings of Machine Learning Research (PMLR)

List of topics:
      - Embedding differential equations into machine learning (Neural ODEs, normalising flows, ...);
      - Solving differential equations using machine learning (PINNs, Neural Operators, ...);
   - Machine Learning-augmented numerical methods for solving differential equations (hybrid solvers, ...);
   - Analysis of numerical methods for incorporating differential equations' solvers into machine learning algorithms (trade-offs, benchmarks, ...);
   - Incorporation of expert-knowledge given by differential equations into machine learning algorithms (physics-inspired machine learning, ...);
      - Applications of the above to modelling/predicting real-world systems in science and engineering (finance, biology, physics, chemistry, engineering, ...); 
      - Use of machine learning to model systems described by differential equations (finance, biology, physics, chemistry, engineering, ...);
   - Approaches to extract physical knowledge out of learned differential equations for explainable AI (SINDy, ...);
   - Computational efficiency of DE solvers involved in ML algorithms (ODE solvers, ...).

For more information, visit our website: \href{https://mlde-ecai-2024.github.io/}{ML-DE Workshop ECAI 2024.

Related Resources

Cyber-AI 2026   The 2nd IEEE 2026 International Conference on Cybersecurity and AI-Based Systems (Scopus)
MLMI--EI 2026   2026 The 9th International Conference on Machine Learning and Machine Intelligence (MLMI 2026)
MLIOB 2026   7th International Conference on Machine Learning, IOT and Blockchain
SPRA 2026   SPIE--2026 6th Symposium on Pattern Recognition and Applications (SPRA 2026)
UAI 2026   42nd Conference on Uncertainty in Artificial Intelligence
ACM ICCAI 2026   ACM--2026 12th International Conference on Computing and Artificial Intelligence (ICCAI 2026)
ISMSI--EI 2026   2026 10th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence (ISMSI 2026)
𝗟𝗼𝗥𝗲𝘀𝗟𝗠 2026   The Second Workshop on Language Models for Low-Resource Languages (LoResLM 2026 @ EACL)
IEEE-ISCAIT 2026   IEEE 2026 5th International Symposium on Computer Applications and Information Technology
ICML 2026   Forty-Third International Conference on Machine Learning