EDM: Educational Data Mining

FacebookTwitterLinkedInGoogle

 

Past:   Proceedings on DBLP

Future:  Post a CFP for 2022 or later   |   Invite the Organizers Email

 
 

All CFPs on WikiCFP

Event When Where Deadline
EDM 2021 Educational Data Mining
Jun 29, 2021 - Jul 2, 2021 Paris, France Feb 26, 2021 (Feb 19, 2021)
EDM 2020 EDM2020: 13th International Conference on Educational Data Mining
Jul 10, 2020 - Jul 13, 2020 Ifrain, Morocco Mar 9, 2020 (Mar 3, 2020)
EDM 2019 The 12th International Conference on Educational Data Mining
Jul 2, 2019 - Jul 5, 2019 Montreal, Canada Mar 4, 2019 (Feb 24, 2019)
EDM 2018 The 11th International Conference on Educational Data Mining – EDM 2018 Preliminary Call for Papers
Jul 15, 2018 - Jul 18, 2018 University at Buffalo, New York, United Feb 28, 2018 (Feb 21, 2018)
EDM 2016 International Conference on Educational Data Mining June 29, 2016 - July 2, 2016
Jun 29, 2016 - Jul 2, 2016 Raleigh, NC, USA Feb 26, 2016
EDM 2015 Educational Data Mining
Jun 26, 2015 - Jun 29, 2015 Madrid, Spain Feb 9, 2015 (Feb 2, 2015)
EDM 2014 Educational Data Mining
Jul 4, 2014 - Jul 7, 2014 London, UK Feb 24, 2014 (Feb 17, 2014)
EDM 2012 The 5th International Conference on Educational Data Mining
Jun 19, 2012 - Jun 21, 2012 Chania, Crete, Greece Feb 5, 2012
EDM 2011 The 4th International Conference on Educational Data Mining
Jul 6, 2011 - Jul 8, 2011 Eindhoven, Netherlands Mar 28, 2011
EDM 2010 The Third International Conference on Educational Data Mining
Jun 11, 2010 - Jun 13, 2010 Pittsburgh, PA, USA Mar 10, 2010
EDM 2009 2nd International Conference on Educational Data Mining
Jul 1, 2009 - Jul 3, 2009 Cordoba, Spain Mar 31, 2009
EDM 2008 First International Conference on Educational Data Mining
Jun 20, 2008 - Jun 21, 2008 Montreal, Canada Mar 31, 2008
 
 

Present CFP : 2021

Shifting Landscape of Education: Improving Blended and Distance Learning
Educational Data Mining is a leading international forum for high-quality research that mines datasets to answer educational research questions, including exploring how people learn and how they teach. These data may originate from a variety of learning contexts, including learning and information management systems, interactive learning environments, intelligent tutoring systems, educational games, and data-rich learning activities. Educational data mining considers a wide variety of types of data, including but not limited to log files, student-produced artifacts, discourse, learning content and context, sensor data, and multi-resource and multimodal streams. The overarching goal of the Educational Data Mining research community is to support learners and teachers more effectively, by developing data-driven understandings of the learning and teaching processes in a wide variety of contexts and for diverse learners.

The 14th iteration of the conference, EDM 2021, will take place in a hybrid format, both online and in-person, to facilitate participation and networking for all.

The theme of this year’s conference is “Improving Blended and Distance Learning” (BDL). The theme focuses on identifying learning or teaching strategies that can be used to improve learning in various formats, such as partially or fully online, synchronous or asynchronous, and centralized or federated. In addition to the general topics listed below, we welcome research in the following areas: receiving implicit and explicit feedback from learners in BDL environments, interacting with students to ensure no learner is left behind, integrating and utilizing learning analytics in BDL environments to cope with switching between in-person and online modes, and addressing emerging privacy and ethical challenges in the new learning setting.

Topics of Interest
Topics of interest to the conference include but are not limited to:

Developing new techniques for mining educational data.
Closing the loop between EDM research and learning sciences
Informing data mining research with educational and/or motivational theories
Actionable advice rooted in educational data mining research, experiments, and outcomes
Evaluating the efficacy of curriculum and interventions
Domain Knowledge Modeling
Deriving representations of domain knowledge from data
Algorithms for discovering relationships, associations, and prerequisite structures between learning resources with different formats, including programming practices, essays, and videos
Algorithms to improve existing domain models
Novel methods to collect domain knowledge models, including crowd-sourcing and expert tagging
Educational Recommenders, Instructional Sequencing, and Personalized Learning
Learning resource recommendation algorithms, remedial recommendations, and learner choice in selecting the next activity
Goal-oriented instructional sequencing
Personalized course recommendations
Peer recommendation for collaborative learning
Offline and online evaluation methods for educational recommender systems and sequencing algorithms
Equity, Privacy, Transparency, and Fairness
Ethical considerations in EDM
Legal and social policies to govern EDM
Developing privacy-protecting EDM algorithms and detecting learner privacy violations in existing methods
Developing and applying fairer learning algorithms, and detecting and correcting instances of algorithmic unfairness in existing methods
Developing, improving, and evaluating explainable EDM algorithms
Learner Cognitive and Behavior Modeling and its association with performance
Modeling and detecting students’ affective and cognitive states (e.g., engagement, confusion) with multimodal data
Temporal patterns in student behavior including gaming the system, procrastination, and sequence modeling
Data mining to understand how learners interact with various pedagogical environments such as educational games and exploratory learning environments
Learner Knowledge and Performance Modeling
Automatically assessing student knowledge
Learner knowledge gain and forgetting models in domains with complex concept structures
Modeling real-world problem-solving in open-ended domains
Causal inference of students’ learning
Predicting students’ future performance
Learning analytics
Institutional analytics
Learner profiling
Multimodal analytics
Social and Collaborative Learning
Modeling student and group verbal and non-verbal interactions for collaborative and/or competitive problem-solving
Social network analysis of student and teacher interactions
Data mining to understand how learners interact in formal and informal educational contexts
Peer-assessment modeling
Social learner modeling
Reproducibility
Replicating previous studies with larger sample sizes, in different domains, and/or in more diverse contexts
Facilitating accessible benchmarking systems and publishing educational datasets that are useful for the community

Submission Types
For all tracks, the references section at the end of the paper does not count towards the listed page limits.

Full Papers — 10 pages. Should describe original, substantive, mature, and unpublished work.
Short Papers — 6 pages. Should describe original, unpublished work. This includes early stage, less developed works in progress.
JEDM Journal Track Papers — Papers submitted to the Journal of Educational Data Mining track (and accepted before May 30, 2021) will be published in JEDM and presented during the JEDM track of the conference.
Industry Papers — 6 pages. Should describe innovative uses of EDM techniques in a commercial setting.
Doctoral Consortium — 2-4 pages. Should describe the graduate/postgraduate student’s research topic, proposed contributions, results so far, and aspects of the research on which advice is sought.
Posters/Demos — 2-4 pages. Posters should describe original unpublished work in progress or last-minute results. Demos should describe EDM tools and systems, or educational systems that use EDM techniques.
Workshop proposals — 2-4 pages. Should describe the organizers’ plan both to conduct the workshop (e.g., format, rough schedule, proposed list of speakers) and to stimulate growth in the workshop’s area of focus. Workshop organizers should indicate whether they would prefer to host their event in a hybrid format (supporting both in-person and remote attendees), or a remote-only format.
Tutorial proposals — 2-4 pages. Should motivate and describe succinctly the field or tool that will be presented, as well as a plan for attendees to learn it in a hands-on way. Tutorial organizers should indicate whether they would prefer to host their event in a hybrid format (supporting both in-person and remote attendees), or a remote-only format.

All accepted papers will be published in the open-access proceedings of the conference, except for the Journal track as stated above. Papers submitted to workshops will be published separately in the workshop proceedings. All paper submissions must be submitted for double-blind reviewing.
 

Related Resources

ICDM 2021   21st IEEE International Conference on Data Mining
DMCIT 2022   2022 6th International Conference on Data Mining, Communications and Information Technology (DMCIT 2022)
MLNLP 2021   2nd International Conference on Machine Learning Techniques and NLP
WSDM 2022   Web Search and Data Mining
MLLD 2021   Second International Workshop on Mining and Learning in the Legal Domain
MSA 2021   Multivariate Statistical Analysis
DTMN 2021   7th International Conference on Data Mining
DASFAA 2022   Database Systems for Advanced Applications
DMSE 2021   2nd International Conference on Data Mining and Software Engineering
ICDM IncrLearn 2021   2nd ICDM Workshop on Incremental classification and clustering, concept drift, novelty detection in big/fast data context (IncrLearn)